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In this work it is shown that the energy of a material can be expressed as a functional of the atomic density
distribution function and that this energy can be approximated via the method of Taylor expansion. It is then
shown that a matrix representation of the second-order term in the Taylor expansion of the energy functional
provides a parameterizable expression for the energy that avoids the necessity of finding the as yet unknown
functional forms connecting atomic positions to system energies. Using the basis of spherical harmonics �Ylm�
it is shown that the matrix representation of the energy involves the computation of the Steinhardt bond-
orientational order parameters, previously used to classify local crystallographic orderings in amorphous ma-
terials. It is also shown that these parameters coincide with the “embedding density” corrections utilized in the
modified embedded atom method. By incorporating these bond-orientational order parameters into the Taylor
expansion for the energy function, it is demonstrated that this method provides a means for reproducing the
phase diagram of various metallic states of Cu and U. Consequently, the formalism introduced here is dem-
onstrated to be systematically improvable via improvements in the underlying basis set of spherical harmonics.
Finally, it is shown by reference to the body-centered cubic phase of U that extension to arbitrary crystallo-
graphic requires a further examination of the use of interatomic screening potentials that “dampen” the con-
tributions of atoms other than first-nearest neighbors.
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I. MOTIVATION

Although Moore’s Law has continued to hold true in the
realm of computational performance, it has been argued that
an analogous exponentiation of progress has not manifested
in the realm of interaction potentials for materials
simulation.1 The considerable achievements made, therefore,
in computing capabilities cannot be fully exploited to pro-
vide commensurate advances in our understanding of mate-
rials until rigorous techniques for constructing such interac-
tion potentials are established and aggressively developed. In
this work we propose one possible general framework for
such a materials interaction potential operating at the atomic
�but not electronic� level and subsequently derive some spe-
cific instances of this materials interaction potential that may
be suitable for molecular dynamics or Monte Carlo simula-
tions of materials. The resulting materials interaction poten-
tials, by virtue of the proposed method of construction, pos-
sess an accuracy that is systematically improvable through
the addition of higher-order terms in a Taylor expansion or
expansion of the basis set upon which the atomic density
distribution �obtained from the coordinates of each of the
atoms in a simulation, for example, or a thermal probability
distribution obtained from experiment� is represented.

The current set of materials interaction potentials can be
broadly separated into three main classes: pair potentials,
embedding potentials, and self-consistent potentials. Pair po-
tential techniques are typically extensions of empirical rela-
tions derived for materials interactions under a given set of
circumstances.2–4 Rarely do pair potentials offer the oppor-
tunity for rigorous and systematic improvements in predic-
tive performance, due to their specificity to a certain class of
interaction, or a lack of theoretical sophistication in their
underlying functional forms. For any given material there is

typically a fusion of various interaction classes �ionic, cova-
lent, van der Waals, metallic� that are operative, and their
exact combination may vary with conditions of strain, distor-
tion or local impurity content.

Embedding methods are conceptually rooted within the
fundamental forms provided by density-functional theory
�DFT�,5 however, these connections are rarely made explicit
and quantitative. Instead, embedding energy functional
forms, including not only the embedded atom method
�EAM�, but the equivalent crystal method and the effective
medium theory, tend to spring from a sense of chemical or
physical intuition rather than rigorous and extensible
representations.6–10 The following work will go some way to
demonstrate an alternative approach to the derivation of em-
bedding methods.

Self-consistent methods, such as the tight binding, bond
order, and ReaxFF potentials, are often the most computa-
tionally intensive, rooted as they are in solving simplified
Hamiltonian eigenequations.11–13 Self-consistent methods
typically offer extensible physics, such that, with additional
computational expense, the energies and properties obtained
can be systematically improved.14

While self-consistent methods offer one avenue toward
improved materials interaction potentials, we posit that such
self-consistent methods operate on a higher level than is de-
sirable for many atomistic materials simulations, and that
less demanding yet still extensible methods can be derived
by exploiting the fundamental premises underlying the Lan-
dau theory for second-order phase transitions. These pre-
mises include �a� that the energy may be written as a func-
tional of the atomic density distribution �corresponding to
the distribution of the positions of the nuclei, and not, there-
fore, directly related to the electronic structure�, �b� that the
functional can be approximated by the first few terms of a
Taylor expansion, and �c� that the atomic density distribution
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can be represented in a basis of symmetry-adapted
functions.15

In this paper we first outline a general expression for the
energy of a system in terms of the distribution of atoms in
the system, and decompose this into a sum of localized em-
bedding forms. By representing the atomic distribution in
terms of some suitable basis, it is shown that the energy can
be determined from a knowledge of the interaction energies
coupling these basis functions with one another. It will then
be shown how the basis of spherical harmonics leads to an
expression of the energy in terms of the bond-orientational
order parameters,16 and this has close parallels to elements
contained within the modified embedded atom method
�MEAM�.9 Furthermore, it will be shown that various exist-
ing interatomic potentials taken from the three classes dis-
cussed are compatible with this particular representation. Fi-
nally a demonstration of this technique will be made for the
cases of copper and uranium metals, whereby the appropriate
parameters are determined from a set of first-principles
strain-energy relations computed for various crystal struc-
tures. Pathways for future development of this particular
model are then discussed.

II. GENERAL FORMS

A. Energy functional and approximations
to the energy functional

Landau’s theory of second-order phase transitions begins
with the expression of a crystal structure in terms of the
atomic density distribution function ��r�.15 The energy of a
system, E, is then expressed as a functional of ��r�

E = ����r�� �1�

For the purposes of a classical molecular dynamics simu-
lation, the atomic density distribution function, at any mo-
ment in time, is given as a sum of Dirac delta functions over
the atomic coordinates, rj

��r� = �
i

��r − ri� �2�

For the analysis of experimentally determined densities,
which may be thermally smeared, alternative representations
of the density can be used; a sum of Gaussian distribution
functions, for example. Even more generally, the atomic den-
sity distribution function may be given as a set of such func-
tions, each representing the distribution associated with ele-
ments of a given atomic number Z and/or electronic state
�i.e., charged or excited atoms may have different dependen-
cies compared to neutral atoms�. In analogy to DFT, the “ex-
ternal potential” v�r� exerted by the nuclei could also be
used. We omit these possibilities for now, although it will be
necessary to develop these concepts in future work.

Given some ground-state atomic density distribution func-
tion �0�r� with energy E0, the energy of a related state having
atomic density distribution function ��r�=�0�r�+���r� can
be expressed as a Taylor series17

E = E0 +� � �2�

��2 �r,r�����r����r��drdr� + . . . �3�

The first-order term disappears because we have assumed
that we are starting with the ground-state density �0�r�. The
Taylor series representation is advantageous since it provides
us with a basic framework from which approximate methods
for determining the energy of a system can be derived, while
maintaining a mechanism by which the energy may be sys-
tematically improved �i.e., by adding higher-order terms�.

Inserting the expression for ��r� from Eq. �2� into Eq. �3�
produces the following to second order

E = E0 +� � �2�

��2 �r,r��	�
i

���r − ri� − ��r − ri
0��


���
j

��r� − rj� − ��r� − rj
0��drdr� �4�

where the ri
0 are the coordinates of the atoms in the ground-

state configuration. The Dirac delta functions reduce Eq. �4�
to

E = E0 + �
i,j

�2�

��2 �ri,rj� −
�2�

��2 �ri
0,rj� −

�2�

��2 �ri,rj
0�

+
�2�

��2 �ri
0,rj

0� �5�

By introducing the following shorthand

f�ri,rj� =
�2�

��2 �ri,rj�g�rj� = �
i

�2�

��2 �ri
0,rj� , �6�

assuming that

�2�

��2 �ri
0,rj� =

�2�

��2 �rj,ri
0� �7�

and subsuming the final term into the constant E0, Eq. �5�
reduces to a sum of one- and two-body terms

E = E0 + �
i

g�ri� + �
i,j

f�ri,rj� . �8�

The representation of the energy in terms of one- and two-
body terms is fundamental to a number of materials interac-
tion potential schemes, as best expressed by the concepts
developed by Stott and Zaremba.18 The outstanding problem,
tackled in various ways and with varying levels of success, is
to “discover” the forms of these functions g�r� and f�r ,r��.

In the following we shall show that, by eschewing the
delta function representation of the atomic coordinates in
favor of some suitable basis, we may bypass the “hard prob-
lem” posed by the unknown functions, f�r ,r�� and g�r�. Be-
fore so doing, however, it is instructive to consider how the
energy functional of the atomic density distribution function
in Eq. �1� relates to functionals of the electron density distri-
bution function, as developed in the Hohenberg-Kohn DFT.19

B. Connections to electronic structure theory

The first Hohenberg-Kohn theorem states that the ground-
state properties of a many electron system may be uniquely
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determined by the spatial one-electron density distribution
function �e�r�.19 Thus, in analogy to Eq. �1�, the Hohenberg-
Kohn theorem establishes that there exists a functional �e
that determines the energy associated with a given electron-
density distribution function �e�r�

E = �e��e�r�� �9�

As a means to this end, Hohenberg and Kohn also estab-
lished that there is a one-to-one correspondence between the
external potential vext�r� and the ground-state electron distri-
bution �e�r�, for a given number of electrons Ne. Thus �e�r�
may also be expressed as a functional V of vext�r� given Ne.

�e�r� = V�vext�r��,Ne� �10�

In atomic systems, vext�r� most commonly derives from
the positions of the nuclei expressed here as the atomic den-
sity distribution function ��r� via the Poisson equation, al-
though additional external potentials vext��r� may apply also
�electromagnetic fields, for instance�. Hence, the electronic
distribution can ultimately be determined �in a nontrivial
way as specified by the functional V�� from the atomic den-
sity distribution function ��r� and any additional potential
vext��r�

�e�r� = V����r��,vext��r��,Ne� �11�

Insertion of this equation into Eq. �9� reveals that the
energy can ultimately be expressed as a functional of this
atomic density distribution, plus any additional potentials not
resulting from electrostatic interaction with the nuclei, for a
given number of electrons Ne. By including these last two
features of the problem into the specific functional � we
arrive at the original expression from Landau, Eq. �1�

E = �e�V����r�,vext��r�,Ne�� = ����r��Ne,vext�
�12�

Thus it can be demonstrated from quantum mechanics
that the ground-state energy for an atomic system may be
directly computed as a functional of the atomic density dis-
tribution, given a certain external potential vext��r� and num-
ber of electrons, Ne.

III. EMBEDDED FORMS

In this section we consider the computation of the energy
from a localized, or embedded perspective, in that computa-
tion of the energy is broken down into a sum of individual
atomic energies.18 This localization is achieved by creating
local representations of the total atomic density distribution
function, such that energy calculations may be efficiently
performed with ‘order N’ scaling, where N is the number of
atoms.

Consider now a particular atom i within the total atomic
density distribution function ��r�. The embedding concept
implies a localization of energy, based upon the neighbor-
hood “sensed” by that atom i. We define a local atomic dis-
tribution density as

�i�r� = �
j�i

��r − rj�w�rij� �13�

Here the sum is over all atoms j� i and the Dirac delta
function is weighted by the expression w�rij�. The weighting
function may be a simple cut-off function, or a more com-
plex type of screening function, such as the elliptical screen-
ing introduced by Baskes.9 The sum over the local atomic
density distribution functions �i�r� may not necessarily add
up to the total ��r�.

We may express the local, or embedding, energy Ei as a
perturbation from some initial energy E0

i based upon a refer-
ence configuration �i

0�r� in the same way as the more general
energy in Eq. �3�. Omitting the intermediate steps, which
parallel those above, we arrive at an analogous expression to
Eq. �8�

Ei = E0
i + �

j�i

gi�rj�w�rij� + �
j�i,k�i

f i�rj,rk�w�rij�w�rik�

�14�

Using this embedding formalism, therefore, the second-order
expression for the energy has been assumed to adopt a local-
ized form, consisting of the weighted interactions between an
atom and its neighbors, and the atom and pairs taken from
the neighbors.

It is instructive to consider the correspondence between
the embedding energy given in Eq. �14� and the total energy
from Eq. �8�, as this will provide some guidance as to the
reasonableness of the localization assumption implicit in the
embedding formalism. If we assume that the total energy is
given as the sum over the localized, atom centered embed-
ding energies we have, to second order

Etot � �
i

E0
i + �

i,j�i

gi�rj�w�rij� + �
i,j�i,k�i

f i�rj,rk�w�rij�w�rik�

�15�

and thus the correspondences exist

f�ri,rj� � �
k

fk�ri,rj�w�rik�w�rjk�g�ri� � �
j

gj�ri�w�rij�

�16�

The latter relation can be understood in the light of the origi-
nal definition of g�ri� �from Eq. �5�� as the interaction of the
atom positions �ri� with the reference positions �rj

0�; the ref-
erence atoms j in gj�ri� provide a center from which the
deviation contained in ri from the reference material can be
determined. Likewise the two-body energy f�ri ,rj� has been
mapped to a series of weighted two-body interactions as “as-
sessed” from the standpoint of a reference atom k. In prin-
ciple, given suitable forms for fk�ri ,rj� and the weighting
functions w�rij� these relations could be made exact. Unfor-
tunately exact knowledge of these functional forms is elu-
sive, and alternative approaches have to be made. At the
same time, even long-range forces such as the Coulombic
interaction have been shown to be effectively local given
appropriate choices of w�rij�.20

In the following an alternative and more useful method-
ology shall be introduced that bypasses these unknown func-
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tions f�ri ,rj� and g�ri�, but rather harkens directly back to
Eq. �3� by using representations of the local atomic density
distribution in terms of some basis �� j�r��.

IV. MATRIX FORMULATION

Expressing the local atomic density distribution function
�i�r� in terms of some basis �� j�r�� enables a matrix formu-
lation for the embedding energy Ei. In doing so we continue
the tradition of Landau by utilizing appropriate symmetry
representations of the atomic density distribution.15 By de-
fining the order parameter

cj =� �i�r�� j
��r�dr �17�

then

�i�r� � �
j

cj� j�r� �18�

This relation is exact if the basis �� j� is complete.
Defining �cj

0� as the set of expansion coefficients for the
reference configuration and inserting this representation of
the density in Eq. �3�, the energy to second order becomes

Ei = E0
i +� � �2�

��2 �r,r���
j

�cj − cj
0�� j�r��

k

�ck

− ck
0��k�r��drdr� = E0

i + �
j,k

�cj − cj
0��jFk��ck − ck

0�

�19�

where we have defined the operator F as �2�

��2 �r ,r�� and in-
troduced the following convenient notation

�jFk� =� � �2�

��2 �r,r��� j�r��k�r��drdr� �20�

In this way an intelligent basis decomposition of the local
atomic density distribution function allows approximations
to the energy to be efficiently computed in terms of the co-
efficients, �cj� and the constants Fjk present in the matrix
representation F of F, suitably parameterized for a given
atom type. The functions f�ri ,rj� and g�ri� are now con-
tained within this matrix representation and thus their ex-
plicit form need not be determined. We shall now proceed to
provide instances of this matrix representation, drawing from
the literature pertaining to crystallographic order parameters
in particular.21

V. REPRESENTATION OF THE LOCAL ATOMIC
DENSITY DISTRIBUTION FUNCTION BY THE BOND

ORIENTATIONAL ORDER

Bond-orientational order parameters have been applied to
the characterization of crystallographies present at the local
level of disordered phases, and atomic clusters.16,21,22 These
rotationally invariant parameters are attractive for use in a
materials interaction potential since knowledge of the local
crystallographic environment can, in many cases, suffice to

determine energies in a local way. This thesis is especially
relevant to many atomistic systems in which a pair potential
or embedding method is used, as these methods typically
apply a cutoff for neighborhood determination, and so are
inherently local. In addition to this observation, another ob-
vious observation may be added: atoms of differing type �be
they atoms of differing atomic number or atoms of the same
atomic number yet differing in their electronic states� exhibit
differing crystallographic preferences. Thus, iron at room
temperature is a body-centered cubic �bcc� metal, whereas
platinum is face centered cubic �fcc�, zinc is hexagonal clos-
est packed �hcp�, uranium is orthorhombic, bismuth is rhom-
bohedral, and plutonium is monoclinic.23 It therefore seems
reasonable to utilize a quantitative metric of the local crys-
tallographic environment in order to describe the deviation
of an atom’s environment from its preferred state, and thus to
determine in a quantitative sense the energy required in order
to produce said deviation. In the following we provide a
quantitative basis for this “materials intuition” by showing
how the bond-orientational order parameter16 can be derived
from the atomic density distribution function based upon the
preceding framework.

Bond-orientational order parameters ignore the r depen-
dence of the nearest neighbors �NNs�, focusing instead on
the angular arrangement of the nearest neighbors, captured
by the vectors ��ij ,�ij�.16 In order to avoid the obligation to
select a preferred set of axes, the parameters are set to be
rotationally invariant through normalization, as detailed be-
low. Localization of the bond-orientational order is typically
achieved by restricting the sum, for example, to the nearest
12 neighbors. Herein we generalize this choice through the
initially unspecified weighting function w�rij�. The angular
arrangement is characterized by utilizing the basis of spheri-
cal harmonics �Ylm�� ,���.

The lm-th moment of an atom is given by the projection
of the local atomic density distribution function onto
Ylm�� ,��. Using Dirac notation,

�lm,i = �Ylm��,���i�r,�,��� �21�

In this way, �lm,i resembles cj in Eq. �17�. Using the defini-
tion of �i�r� provided in Eq. �13� �lm,i becomes

�lm,i = �
j

Ylm��ij,�ij�w�rij� �22�

Furthermore, �i�r� can now be expanded, but with loss of
radial information, as

�̃i�r� = �
lm

�lm,iYlm��,�� �23�

where the tilde has been used to indicate loss of radial infor-
mation. �̃i�r� is the radially reduced density. The l-th com-
ponent of �̃i�r� can be obtained by projection and summation

�̃l,i�r� = �
m

Ylm��,����Ylm��,���i�r�� �24�

The norm of this l-frequency component is rotationally in-
variant, unlike �lm,i, and corresponds to the Steinhardt bond-
orientational order parameter �l,i �Ref. 16�
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�l,i = ���̃l,i�r��̃l,i�r�� = ��
j,k

w�rij�w�rik�Pl�cos � jik�

�25�

The latter expression in terms of the Legendre polynomials
Pl�cos � jik� arises from the addition theorem for spherical
harmonics. We may then write the radially reduced density
as a sum of the rotationally invariant l-frequency coeffi-
cients, �l,i multiplied by the normalized variant functions

Ỹl,i�� ,��:16

�̃i�r� = �
l

�̃l,i�r� = �
l

�l,iỸ l,i��,�� �26�

Distortions in the radially reduced density from some
ground-state orientation having coefficients ��l,i

0 � are given
by

��̃i�r� = �
l

�l,iỸ l,i��,�� − �l,i
0 Ỹl,i

0 ��,�� �27�

Kazhdan et al.24 have shown that a lower bound for the norm
of ��̃i�r� is given by the norm of the approximation

��̃i�r� � �
l

��l,i − �l,i
0 �Ỹl,i��,�� �28�

Such an approximation captures, therefore, in a general
way the distortions in the local crystallography of the atom,
with the omission of any radial dependence that is not al-
ready captured by the weighting functions w�rij�. While
more exact representations may result from consideration of
the variant quantities �lm,i, the increase in parameter space
and necessity of adopting a preferred set of axes hinder their
application. Kazhdan et al. have shown previously that, for
the purpose of classifying three-dimensional shapes, the one-
dimensional array of rotationally invariant forms �l,i in most
cases performs better than methods requiring principal axes
alignment of the two-dimensional array of rotationally vari-
ant coefficients �lm,i.

24 We therefore adopt this approach, al-
though alternative basis sets �� j� may yet provide a more
accurate and useful specification of the local atomic density
distribution function.

Using this lower bound, then, and assuming that a re-
duced radial distribution sufficiently captures the local crys-
tallography, the energy of atom i, to second order, may be
approximated using Eq. �19�

Ei � E0
i + �

l,l�

��l,i − �l,i
0 ��lFl����l�,i − �l�,i

0 � �29�

If we assume that states of different frequency l do not
couple under the operator F �testing for the cases of U and
Cu described below showed that this contribution is indeed
negligible� we arrive at the radially reduced NMEX equation

Ẽi = E0
i + �

l

Fll��l,i − �l,i
0 �2 �30�

where NMEX is an acronym of neighborhood moment ex-
pansion, and is used as the descriptive title for this inter-
atomic potential framework.

It should be clear that this potential could be systemati-
cally improved by including higher-order terms l, the effect
of coupling between l moments, and/or by including higher-
order terms in the Taylor expansion. The cost of these im-
provements, however, is an increase in the number of param-
eters that need to be determined for the system at hand.
However, with the present ability to generate a large number
of high quality, hypothetical structures using density-
functional theory, for example, the development of param-
eters can be achieved without too much worry about over
training a parameter set to a small number of training struc-
tures. Since the art of parameterization is not presently the
focus of this work we defer the reader to other works on that
topic such as the Bayesian analysis of interatomic potentials
for Mo performed by Frederiksen et al.25

VI. RESTORING RADIAL DEPENDENCE TO THE
REPRESENTATION OF THE LOCAL ATOMIC DENSITY

DISTRIBUTION FUNCTION

In this section, the definition of the bond-orientational or-
der is modified so as to better represent the local atomic
density distribution function such that radial dependence is
not neglected. In doing so, the framework for a more exact
symmetry representation is established for use in NMEX
simulations of materials.

A. Augmenting the functional forms

Let the functional representation �� j�r�� introduced in Eq.
�17� correspond to the lm spherical harmonics, except now
with the incorporation of a radial function f l�r� which may
be unique for each value of l

�lm�r� = f l�r�Ylm��,�� �31�

This decoupling of the radial and angular dependencies rep-
resents an approximation to the functional form, but not an
uncommon one. Additionally, assuming that the �2l+1� com-
ponents of each frequency l share the same radial depen-
dence embodies another approximation.

The same procedure followed in Sec. V may now be re-
peated but with these new functional forms. Equation �25�
now yields

�l,i = ��
j,k

w�rij�w�rik�f l�rij�f l�rik�Pl�cos � jik� �32�

since we have, in analogy to Eq. �21�

�lm,i = �
j

Ylm��ij,�ij�f l�rij�w�rij� �33�

One advantage to incorporating radial dependence in this
way is that hydrostatic expansions of a lattice, for example,
are now coupled with the effect of crystallographic distor-
tions, in a manner analogous to the coupling of order param-
eters in Landau-Ginzburg theory.

B. Manifestations of these proposed forms in the present suite
of interatomic potentials

Investigation of the literature reveals that a number of
potentials already embody some aspects of the present for-
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mulation. For example, the l=0 component of the energy
reduces to the Morse pair potential4 in the special case when
�0,i

0 =N, there are N nearest neighbors included in �i�r� of
equidistance rij, and the weighting function has an exponen-
tial form:

�0,i = ��
j,k

w�rij�w�rik�P0�cos � jik� = �
jk

w�rij�w�rik�

= Nw�rij� = N exp�− 	rij�E0,i = F00�N exp�− 	rij� − N�2

� A�exp�− 2	rij� − 2 exp�− 	rij�� �34�

Similarly the Stillinger-Weber26 potential for Silicon ac-
cesses the l=2 component

E1,i = �
j,k

w�rij�w�rik��cos � jik −
1

3
�2

�35�

In this case 1
3 is the value of the stationary point �l,0 for the

angle cosine, corresponding to the favored tetrahedral angle,
109.47°.

MEAM composes the local electron density �or embed-
ding density� out of forms l=0 to l=3 determined using Eq.
�32�.9 Although the link between the order parameter and the
embedding density was not derived from any exact physical
principles, it was considered conceptually reasonable to as-
semble angular components of the density according to the
local crystallographic arrangement. An excellent discussion
of the meaning associated with the MEAM parameters has
been provided by Thijsse.27 The NMEX procedure is thus
distinct from MEAM in that the moments are not combined
to produce some fictitious density, but rather are applied to
the direct determination of the energy through the extensible
functional form provided by the Taylor series expansion of
Eq. �3� and the basis representation described in Eq. �19�. At
the same time, it should be recognized that MEAM has seen
considerable success, in that the inclusion of density compo-
nents according to Eq. �32� have been shown to significantly
improve the performance of embedding potentials, to the
point at which physically meaningful simulations can be
performed even for complex materials such as plutonium
metal.28

Analogous terms reappear in other off-shoots of the EAM,
such as the embedded defect model, which utilizes �2,i as a
means to capture the elastic properties of bcc metals.29 In
this case, Pasianot et al. derived this invariant by coupling a
central-force model with the dipole tensor expression for
defect-induced forces in a continuous medium. As in
MEAM, this expression is described, without physical justi-
fication, as an angular contribution to the embedding density.

One additional parallel can be made, and this is to the
expression for the bond order in the bond-order potential30


i,j � 	�
k,l

f l�rij,rik��Pl�cos � jik� + Pl�cos �ijk��
−1/2

�36�

where orders up to l=6 are required for f-electron materials,
l=4 for d-electron materials and l=2 for s-p systems. In
future work we plan to explore connections between the �l,i

parameters and components of the electronic structure re-
sponsible for bonding and angular interactions.

VII. APPLICATION TO THE PHASE DIAGRAMS OF
COPPER AND URANIUM

We have applied the NMEX formalism encapsulated by
Eq. �30� and Eq. �32� to the cases of copper and uranium
metal. Copper is a material that is presently well-described in
general by EAM, and recently a variant of MEAM, called the
multistate-modified embedded atom method �MS-MEAM�
was applied to Cu.31 While many properties of Cu were well-
described by MS-MEAM, surface properties remained diffi-
cult to reproduce. The peculiar crystallographies exhibited by
actinide metals, including U, have posed a problem to the
existing suite of materials interaction potentials, by virtue of
their lower symmetry expressions. A materials interaction
potential, therefore, that acts upon a hierarchy of symmetry-
adapted functions may have a greater degree of success in
capturing these low symmetry preferences as well as provid-
ing a better description of surface properties.

A. Parameterization details

In order to develop the parameter sets for Cu and U, we
utilize density-functional theory calculations performed us-
ing VASP.32 Developing potentials in this way has become
fairly popular due to the relatively high accuracy of DFT
calculations, and their increasing efficiency for small, high-
symmetry unit cells.31,33,34 Since DFT calculations are most
often limited to no more than a few hundred atoms, the de-
velopment of interatomic potentials remains a high priority
for those needing to simulate materials phenomena at the
“mesoscale”—the size scale bridging nanometers to mi-
crometers. In addition to reaching longer length scales, inter-
atomic potentials can be used to simulate longer time scales.

The PW91 functional was used to incorporate exchange
correlation,35 and the projector-augmented wave method was
used to approximate core electrons.36 The k points and en-
ergy cutoff were chosen to allow convergence to within 5
meV. Within each self-consistent calculation energies were
converged to 1�10−5 eV. Further details on density func-
tional theory computations performed on Cu and U can be
found in the literature.31,37

The proposed materials interaction potential, NMEX, re-
quires a set of parameters for each atom type—here, Cu and
U. The parameter set is composed of the coupling coeffi-
cients �Fll�, the stationary points ��l

0�, and parameters defin-
ing the weighting and radial functions, w�rij� and f l�rij� re-
spectively. To define these functions f l�rij� and w�rij�
exponential decays were assumed, thus allowing the two
functions to be coupled into one, similarly to MEAM

f l�rij�w�rij� � wl�rij� = e−	l�rij/r0−1� �37�

r0 is a reference distance, taken in MEAM to be the nearest-
neighbor distance in the reference equilibrium fcc structure.
We follow the same convention in this work. Thus a set of
decay coefficients �	l� are required for each atom type, the
constants r0 for the reference fcc structures, and E0 to set the
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reference energies. Constraints were applied such that �Fll�
and ��l

0� were required to be greater than zero, in accordance
with the principles underlying their formulation: Namely, the
second-order approximation implies that any perturbation to
the moments from the ground-state configuration must be
such that the energy is raised �negative coefficients Fll would
imply that the energy could be indefinitely lowered by a
“runaway” of the moments to either very low or very large
values�; Since the �l values are positive by definition, the
stationary points �l,0 must also be positive. The weighting
factors �	l� were required to be greater than 1.0 since their
purpose is to localize the neighborhood about the given
atom. An additional constraint could also be applied—
namely, that �l

0 correspond to �l for the ground-state struc-
ture if it is truly known. Similarly E0 could be constrained by
the energy of the ground state also. However, it was found
that this does not lead to an optimal parameterization for U
and hence this constraint was relaxed. In the case of Cu, a
good fit �i.e., just as accurate as the reference DFT
energies�38 can be obtained with this constraint, but a better
one can be obtained if it is relaxed �see below�. In both cases,
the �l,0 values are nonetheless close to the �l values obtained
for the lowest-energy structure. It is considered that this dif-
ference may be due to: �a� limits placed on the maximum
values of l considered herein �basis set incompleteness�; �b�
loss of information through use of rotational invariants; �c�
neglect of coupling between symmetry states of different l;
or �d� “hidden physics” such that optimal local arrangements
corresponding to the true �l

0 values determined through un-
constrained optimization are impossible to satisfy for all at-
oms in a crystallographic setting, and hence the ground-state
structure has a different set of �l values.

During parameterization, the NMEX energies were deter-
mined by restricting the neighborhood to the minimal set of
nearest neighbors. For symmetric phases this can be per-
formed quite simply: In simple cubic �sc�, fcc, diamond cu-
bic �dc�, and hcp the nearest neighbors all have identical
environments and interatomic distances relative to the central
atom. For the orthorhombic case of U there are 12 neighbors
that can be described as NNs, having interatomic distances
within a few percent of each other, although the symmetry of
the system means that these neighbors are not equivalent,
rather there are four symmetry related sets of three unique
nearest neighbors.39 In the bcc phase there are two sets of
nearest neighbors. It is not clear how to include these NNs in
the parameterization, hence the bcc phase is not used to fit
the NMEX parameters. We shall consider this special case of
the bcc phase of U later in this work.

B. Development of a materials interaction potential for copper

The training set for the NMEX Cu potential consists of 60
data points taken from the fcc, hcp, dc, sc, and fcc�111�
phases, by evaluating the energies at a set of strains ranging
from −20% to +10% relative to the fcc equilibrium bond
length �r0 is 2.574 Å�. These points are shown in Fig. 1.
Parameterization proceeded here and in the U case as fol-
lows: �1� The value E0 was optimized to minimize the root-
mean-square error in the NMEX energies compared to the

DFT data shown in Fig. 1 with all Fll set equal to zero; �2�
Beginning with l=0, each of �l

0, 	l, and Fll, as well as E0
once more, were simultaneously optimized to minimize the
same root-mean-square error; �3� Step �2� was repeated for
increasing values of l up to l=6. The conjugate gradient
method was used to minimize the root-mean-square error.
We shall now describe the results of this process.

In the absence of any representation of the local geometry,
i.e., all of Fll equal to zero, the root-mean-square error over
the data set was 0.56 eV. Including F00 lowered this error to
0.28 eV. Including the term F11 reduced this error to 0.26 eV,
while F22 was found to have no effect. Addition of F33 drops
the error marginally to 0.18 eV, whereas the inclusion of F44
is found to lower the error by over an order of magnitude, to
0.007 eV. Subsequently F55 lowers the error to 0.002 eV, and
F66 has no discernible effect. Since errors well within DFT
accuracy are obtained at l=4 we present this parameter set in
Table I.

As indicated by the exactness of the fit obtained using
lmax=4 the second-order framework using only diagonal
terms Fll can be considered sufficient to capture a variety of

FIG. 1. Application of NMEX formalism to a series of hypo-
thetical and actual crystal structures of Cu at various conditions of
hydrostatic strain. Plotted data points indicate DFT data; lines con-
nect the data points calculated using the optimized NMEX param-
eter set. Positive strain is tensile, negative is compressive.

TABLE I. NMEX parameters for Cu and U. E0 for Cu is
−3.85 eV and for U is −11.60 eV. Fll is in units of �10−2 eV.

l 0 1 2 3 4 5 6

Cu

Fll 1.91 6.16 0 4.95 2.32

�l
0 11.70 0.00 1.28 3.49

	l 4.03 4.13 4.04 5.16

U

Fll 3.47 1.11 60.49 1.98 0.478 0.341 0.014

�l
0 11.88 0.00 0.44 0.03 11.19 10.13 4.01

	l 3.77 9.22 1.00 1.00 7.68 5.35 15.01
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crystallographic environments. The embedded topology thus
expressed by the bond-orientational order parameters �l ap-
pears to be sufficient to describe the interactions without the
necessity of including a pair potential, as utilized in the em-
bedded atom methods.5 As highlighted earlier, under special
conditions the NMEX term involving F00 in fact reduces to a
commonly used pair potential.

The effect of each of the l components to the energy can
be individually observed by systematically switching them
“off” by setting Fll=0. For instance removing the l=4 band
leaves the curves for the fcc, dc, hcp and fcc�111� surface
mostly unchanged, but significantly distorts the sc. Likewise,
switching off l=3 maintains the integrity of the fcc, sc, surf,
and hcp phases but dramatically distorts the placement and
curvature of the dc phase. l=2 contributes nothing to the
parameterization of the Cu crystallographic phases made
herein, whereas it is found that l=1 is highly significant for
obtaining the correct energies of the surface phase. Finally
l=0 has a very broad impact upon obtaining the correct cur-
vature and hence bulk moduli of all the crystalline phases
studied herein. We will see similar, but somewhat different
trends when we perform the same analysis for U shortly. As
anticipated earlier through our qualitative analysis of the
bond-orientational order parameters, each �l reveals some-
thing pertinent about the local crystallographic symmetry,
which we have exploited for the purposes of developing an
extensible materials interaction potential. The extensibility of
this method is evidenced here by the ability to improve the
accuracy of the fit systematically by the addition of higher
order l terms in the basis expansions of the local atomic
density distribution.

Earlier it was remarked that an additional constraint could
be applied during parameterization, namely, requiring �l

0 and
E0 to match the properties of the ground-state crystallo-
graphic phase at the equilibrium volume. Applying this con-
straint leads to a potential still within the limits of expected
DFT accuracy, but with a higher total error of 0.012 eV
compared to 0.007 eV in the unconstrained case, both taken
using a basis set up to l=4. As mentioned previously, the
values of �l,0 in the unconstrained case are similar to those
of �l,0 in the constrained case: �11.7,0,1.0,1.28,3.49� versus
�12.0,0,0,0,2.29�, respectively.

C. Development of a materials interaction potential
for uranium

Drawing from a database of 70 first-principles single-
point energy calculations of various crystallographic phases
for uranium following the methodology previously
published,37 we have evaluated the parameters �Fll�, �l,0, 	l,
and E0 for the spherical harmonics of order l up to l=6, as
described above. The fcc equilibrium bond distance of
3.132 Å was used for r0. The root–mean-square errors ob-
tained during fitting were not as good as those obtained for
Cu, and this is attributed to the greater sensitivity of this
metal to the slight changes in crystallography embodied by
the bond-orientational order parameters, �l. Without the use
of the Fll coupling parameters, optimizing E0 alone produces
a root-mean-square error of 2.96 eV. Including F00 lowers

the error to 1.11 eV. Including the l=1 and l=2 bands re-
duces the error to 0.37 and 0.32 eV respectively. Incorporat-
ing l=3 reduces the error further to 0.13 eV, and F44 narrows
this value down to 0.077 eV. A small incremental improve-
ment in the fit arises from F55 �down to 0.076 eV� and fi-
nally, F66 yields a root-mean-square error of 0.045 eV. The
final fit is shown in Fig. 2.

Constraining the values of �l
0 to match the moments of

the equilibrium geometry of the orthorhombic phase is not as
successful as in the case of Cu. The minimum root-mean-
square error obtained using our optimization procedure is
0.18 eV and only the l=0,1 ,3 ,4 moments contribute. Visual
inspection of the phase diagram obtained using this con-
straint shows that all the phases are reasonably described,
with the exception of the simple cubic.

While not as successful as the Cu parameterization, the
parameterization for U is still within DFT accuracy, and thus,
reproduces the phase diagram to within the anticipated accu-
racy of the DFT calculations. However, the number of pa-
rameters now for U is significantly greater than that for
Cu—a fact which should not be surprising considered the
more complex crystallographic preferences demonstrated by
this actinide series metal. As we considered earlier, it is pos-
sible to “breakdown” the contributions from each of the l
modes to the overall phase diagram. Due to the difference in
decay coefficients for a given l value between Cu and U we
find that the contributions are somewhat different in each
case. l=3 and l=6 strongly control the features of the dc
phase for example, whereas l=1 and l=2 predominantly af-
fect only the surface and orthorhombic phases. l=0 modifies
the curvature of each of the phases when under tensile stress,
whereas l=4 displaces the energy of all states except the dc
with no change in curvature. For the case of U, turning off
l=5 displaces the energies of the orthorhombic and hcp
states with no real shifts in the curvature of these phases. As

FIG. 2. �Color online� Application of NMEX formalism to a
series of hypothetical and actual crystal structures of U at various
conditions of hydrostatic strain. Plotted data points indicate DFT
data; lines connect the data points calculated using the optimized
NMEX parameter set. Positive strain is tensile, negative is
compressive.
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envisioned during construction of this model, and demon-
strated previously for Cu, the �l order parameters provide a
useful way of assigning energy contributions to different
crystallographic features of the local atomic environment.

D. Consideration of screening: BCC uranium

It is instructive now to consider how the particular param-
eterization described above can be generalized to prepare a
potential that is useful for atomistic simulation. The con-
trolled environment of the atom utilized in the parameteriza-
tion schemes is lost when a thermalized, dynamical environ-
ment is encountered, and there must therefore be introduced
a sound scheme for determining which atoms are nearest
neighbors and which ones are not, or whether there should be
a gradual scheme by which neighbors in outer atomic shells
should be considered. For the parameterization described in
Figs. 1 and 2 the selection of nearest neighbors �i.e., the
function w�rij�� was simplified, as the generally high symme-
tries allowed nearest neighbors to be easily selected: in the
case of the orthorhombic phase the 12 nearest neighbors
were used. As discussed by Baskes,9 the case of bcc compli-
cates this choice. When we apply the NMEX parameter set
derived for the cases of Fig. 2 to the bcc phase it is shown
that inclusion of only first-nearest neighbors leads to a lower
bound to the energy at compressive strains and an upper
bound to the energy at tensile strains �Fig. 3�. Compare this
to the effect of using second-nearest neighbors �2NNs�: in
this case the NMEX energy is an upper bound to the true
energy at compressive strains and a lower bound at tensile
strains. These results suggest that the second-nearest neigh-
bors should be included in the determination of the energy,
but with a reduced contribution due to some kind of screen-
ing by the first-nearest neighbors. An unsophisticated way to
demonstrate this is given in Fig. 3 in which is also plotted the
NMEX energy for a 2NN bcc representation, but with the
2NNs treated as if they were displaced an additional 10%
away from the central atom. The NMEX energy calculated

using this simplistic treatment ends up being very close to
the true energy. Exploration of appropriate screening tech-
niques, including a physical basis for interatomic screening,
will be made in a separate paper.

VIII. SUMMARY

In this work we have shown that there is a need for the
development of a fundamental framework for materials in-
teraction potentials, and provided one such framework based
upon the concepts of localization through “embedding” and
basis representations of the local crystallography. Beginning
with the concept that the energy can be determined as a
functional of the atomic density distribution function, we
showed that successive approximations could be made to the
total energy of the system through the technique of Taylor
expansion. This approach was shown to be consistent with
the density-functional theory that expresses system energy as
a function of the electron density distribution function. Com-
parison of the approximations to the energy produced in this
way with localized forms, separated atom wise, showed that
relations existed, but that the functional forms were non-
trivial; to avoid this difficulty a matrix representation was
proposed, whereby the functions of atomic positions were
replaced with matrix coefficients connecting basis functions.
The basis of spherical harmonics was shown to be one
method for representing the local crystallographic orientation
about an atom, and the coefficients so derived were shown to
be equivalent to the Steinhardt bond-orientational order pa-
rameters. By including radial-dependence, connections be-
tween the second-order energy approximations developed
herein were made to various other forms of interatomic po-
tential, including Morse, Stillinger-Weber, and the modified
embedded atom method. Finally this second-order method
was successfully shown to reconcile the phase diagrams for
Cu and U, although further work will be required to extend
this technique for generalized molecular dynamic or Monte
Carlo simulations.

Areas requiring greater theoretical elaboration include the
connection between matrix coupling constants and symme-
tries in the electronic structure of the materials, more rigor-
ous examinations of the embedding assumption central to
this work, and consideration of the physical basis by which
first-nearest neighbors act to “screen” out the contribution of
neighbors in more distance atomic shells. Once these ques-
tions are adequately solved, it is believed that the founda-
tions will be laid for rigorously and systematically derived
materials interaction potentials.
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